If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-15.75x^2+184x+320=0
a = -15.75; b = 184; c = +320;
Δ = b2-4ac
Δ = 1842-4·(-15.75)·320
Δ = 54016
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{54016}=\sqrt{256*211}=\sqrt{256}*\sqrt{211}=16\sqrt{211}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(184)-16\sqrt{211}}{2*-15.75}=\frac{-184-16\sqrt{211}}{-31.5} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(184)+16\sqrt{211}}{2*-15.75}=\frac{-184+16\sqrt{211}}{-31.5} $
| 1.05^x=1000 | | 2n+5+3n=30 | | 5(x+4)-7x=38 | | 8/9x-2/9=8 | | 6x+76=7x+143 | | 4+7b=7b-2(2+4b) | | 6x+76=7+143 | | 20-7x=-6x+21 | | -38+4b=-2(b+7) | | 6(u-6)-8u=-22 | | 8n+30=6(3n-5) | | 11-2x=317x | | 19-4b=-3(b+7) | | -11/24=2v+1/7/8 | | 39(w)+8=20 | | -19/2/9=1-13/9n | | 2(5p+2)=1+7p | | -8.8x+6.3=-94.02 | | -3-5(-6n+8)=23+8n | | -7+v/2.5=-1.36 | | 5x-40=240 | | 5x+40=240 | | .20x=x-128 | | -4+10x-4x=2(3x)-4 | | 5x+20=305 | | (7x-23)=90 | | (7x-23)=180 | | 4.9x^2-25x-39=0 | | 2w*w=40 | | (5x+1)(7x-23)=180 | | 8.83x=41.5 | | 12-7y=2- |